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The dynamics of the occurrence of the dengue hemorrhagic fever in the 72 provinces of Thailand is
investigated by performing a proper orthogonal decomposition �POD� on spatiotemporal data. Using this
technique, we are able to identify and select the contribution of different modes, selected according to the
energy content, to the evolution of the epidemic during 14 years. We found that the phenomenon is character-
ized by periodic cycles of yearly occurrence characterized by spatial scales of about 420 km. Superimposed on
this basic mode, POD analysis is able to reveal the presence of high-energetic aperiodic traveling pulses of the
epidemic, which extend spatially for about 510 km from Bangkok.

DOI: 10.1103/PhysRevE.73.031913 PACS number�s�: 87.23.Cc, 07.05.Kf, 87.18.Hf, 89.75.Fb

I. INTRODUCTION

Spatial synchrony of population dynamics which is ob-
served in ecology is yet not well understood and is currently
an active area of research �1,2�. Apart from predator-prey
systems that have an intrinsic tendency to cycle �3–6�, ecolo-
gists find regular empirical patterns of population dynamics
as a kind of self-organization within the system �7,8�. One
key to progress in understanding pattern formations in com-
plex systems is to recognize that many apparently random
structures obey a symmetry as striking as that obeyed by
regular structures. A development in this field is made pos-
sible by new statistical methods, extensively used on spa-
tiotemporal data sets �9�, and by massive computer resources
to analyze huge data sets.

An important contribution to the debate on the cyclic be-
havior of population dynamics has been the identification of
periodic traveling waves in the dynamics of cyclic field voles
�10�. More generally traveling waves are represented by
equally spaced peaks of a state field observed in population
dynamics. A popular version of this phenomenon is the oc-
currence of the well known “Mexican wave” in sports stadi-
ums. More dramatically the wave is often caused by the in-
vasion of a virus within a population in a given spatial
region, thus generating periodic infection. Recently this has
been observed in the occurrence of dengue hemorrhagic fe-
ver �DHF� in Thailand �11�. Dengue fever �12� is a
mosquito-borne virus that infects 50–100 million people
each year. Few tools exist to control dengue virus infection
and trasmission. In particular control is focused on control-
ling the mosquito responsible for the desease, Aedes aegypti,
and on effective management of cases of infections �12�. The
incidence spatiotemporal pattern presents nonstationary and
nonlinear features due to the complex effects and interaction
of several factors. The predominant factors influencing the
incidence data include environmental and climate factors
�13,14�, predator-prey dynamics between the pathogen and
the host population �15,16�, and viral factors �17,18�. As a
consequence the incidence data show strong seasonality and
multiyear and intrayear oscillations.

For many families of patterns occurring in a wide range of
different physical situations, it is possible to obtain a useful
systematic characterization of the spatiotemporal dynamics.
Often, the main motivation is that the family is low dimen-
sional, that is, each member of the family might be repre-
sented by a small number of parameters. In these cases we
can use the proper orthogonal decomposition �POD�, also
called the Karhunen-Loéve decomposition �19�, to obtain a
finite set of discrete modes that optimally describe the prob-
lem at hand. In the present paper we report the results ob-
tained by applying the POD to the DHF data set. We show
that POD is a powerful tool to investigate a complex two-
population dynamics, characterized by the presence of both
aperiodic and periodic components. POD has been exten-
sively used in the natural context of analyzing turbulent
fields �19,20�; it has been successfully applied also in as-
tronomy �21–23�. In our present work the POD is used, to
our knowledge for the first time, to analyze spatiotemporal
fields in a biomedical context.

II. THE DHF INCIDENCE DATA SET AND ITS FOURIER
SPECTRUM

The data set we used contains the DHF incidence in Thai-
land I�rn , t�, where rn �n=1,¼,72� indicates the distance
from Bangkok of different provinces of Thailand. The vari-
ous rn define a spatial grid which is not equally spaced. The
field describes 850 000 infections during the period 1983–
1987, recorded on a monthly frequency with a total of T
=168 time steps. Figure 1 shows the contour plot of monthly
incidence of DHF for every Thailand province in the time-
distance plane. The distances from Bangkok are expressed in
kilometers. At first sight a kind of temporal synchrony across
the countries is present. To recover this synchrony we will
make a Fourier analysis of the field, namely, we use the
following decomposition of the field:

I�rn,t� = �
kn,�

akn,� exp�i�knrn − �t��

where kn is the wave vector associated with the spatial grid
and � is the frequency. The Fourier analysis applied to
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I�rn , t� furnishes the set of coefficients akn,�. A plot of the
contours of the spectral power �akn,��2 in the �kn ,�� plane is
reported in Fig. 2. Two main features can be noted: �1� a
high-power region along the line corresponding to a fre-
quency �1/1 yr; �2� the presence of some power randomly
distributed at lower frequencies.

It seems that lower frequencies are excited, but the Fou-
rier analysis is unable to recover these frequencies or some
typical spatial pattern corresponding to these frequencies.
This is perhaps due to some troubles when the Fourier analy-
sis is applied to real data. Two major difficulties are the fact
that often Fourier modes are far from being eigenfunctions of
the phenomenon at hand, and that boundary conditions are
not periodic. In this last case Fourier modes are mixed to-
gether in order to build up a solution that corresponds to the
fictitious periodic boundary conditions imposed by the Fou-
rier analysis. Here we would like to apply the POD analysis
to the DHF incidence data set. The main advantages of the
applicability of POD to data sets coming from spatiotempo-
ral complex systems are �1� the fact that POD modes are
selected according to the energy content of structures,
namely, POD provides an optimal basis to describe the spa-
tiotemporal field at hand; �2� the fact that POD eigenfunc-

tions are not fixed a priori, rather they are selected by maxi-
mizing the average projection of the field onto the
eigenfunctions themselves. In the next section we will briefly
introduce the POD technique.

III. THE PROPER ORTHOGONAL DECOMPOSITION

Introduced in the framework of turbulence �19�, the POD
decomposes a spatiotemporal field u�x , t� as

u�x,t� = �
j=0

�

aj�t�� j�x� �1�

the eigenfunctions � j being constructed by maximizing the
projection of the field onto � j averaged in time and con-
strained to the unitary norm. This procedure leads to an op-
timization problem that can be cast as

�
�

	u�x,t�u�x�,t�
��x��dx� = ���x� �2�

where � represents the spatial domain and the angular brack-
ets represent time averages. The integral Eq. �2� provides the
eigenfunctions � j and a countable, infinite set of ordered
eigenvalues � j �� j+1. When u�x , t� is the velocity field of a
turbulent flow, each � j represents twice the kinetic energy of
the jth mode. Thus, POD builds up the basis functions,
which are not given a priori, but rather obtained from obser-
vations. The time coefficients aj�t� are computed from the
projection of the data on the corresponding basis functions
� j�x�,

�
�

u�x,t�� j�x� = aj�t� . �3�

Being extracted directly from experiments, the POD
eigenfunctions � j�x� can assume the proper functional shape
of the phenomenon, and the associated temporal part aj�t�
represents the time evolution of the jth mode associated with
that eigenfunction. The POD is an optimal expansion of
fields; thus a truncated POD expansion like �4� contains the
largest possible energy with respect to any other linear de-
composition of the same truncation order �19�:

uN�x,t� = �
j=0

N

aj�t�� j�x� . �4�

This means that when we are dealing with a periodic field,
the empirical eigenfunction is just the Fourier base � j�x�
=exp�ikjx� �19�. The POD basis functions are optimal in tur-
bulence studies with respect to the classical Fourier analysis,
where the basis functions are not proper eigenfunctions of
the signal.

Once the Fredholm equation has been solved and eigen-
values and eigenfunctions have been obtained, a reconstruc-
tion of the original field by selectively choosing a finite num-
ber N of the most energetic modes is possible. In this way we
form a subspace spanned by the first N eigenfunctions. These
eigenfunctions can be used either to build a reduced model

FIG. 1. Contours of monthly DHF incidence for the 72 prov-
inces of Thailand in the space-time plane. The distance rn corre-
sponding to the nth province represents the distance from Bangkok
in kilometers.

FIG. 2. �Color online� Contours of spectral power �akn,��2, in the
plane �kn ,��, obtained by Fourier trans- forming the monthly DHF
incidence for the 72 provinces of Thailand. The vertical line indi-
cates the frequency corresponding to 1 yr.
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of the dynamical behavior of the system or in an indirect way
to quantify the number of relevant modes taking part in the
dynamics. This method is particularly appropriate when ana-
lyzing complex physical systems, where different dynamical
regimes coexist. POD allows one to identify these regimes
and to characterize their energetics and their spatial structure.
It must be realized that POD codes need massive computer
resources to solve the Fredholm integral equation. It is thus
difficult to work with big data sets.

IV. DATA ANALYSIS

The POD analysis applied on the DHF incidence gives a
set of eigenfunctions � j�rn� and coefficients aj�t�, as well as
the sequence of eigenvalues � j �j=0, 1,¼, 167�, sorted by
decreasing energetic content. In the usual turbulence analy-
sis, where the field to be analyzed is represented by the ve-
locity of the fluid flows, � j represents the energy content of
fluctuations associated with the jth POD mode. In the present
context � j represents the square of the fluctuating DHF inci-
dence associated with the jth POD mode. Then it is naturally

related to the strength of the infection, namely, the higher � j

the stronger the infection.
In Fig. 3 we report the cumulative “energy” for each POD

mode, defined as Ecum�j�=�k=0
j ��k /Etot� where Etot is the

sum of � j for the 167 POD modes. The mode j=0, being the
average contribution, contains the majority of energy, about
65%, while the first seven modes j=0,¼ , j=6 contain about
90% of the total energy. Further modes add little contribu-
tion; 99% of total energy resides in the first j�24 POD
modes. In contrast, in laboratory turbulent flows, where large
scale energetic coherent structures are present, POD confines
almost 99% of the total energy in the modes j�2 �20�. This
difference indicates the presence of some complex dynamics
in the DHF incidence related to nonlinear interactions among
different modes at all scales. A reconstruction IN�rn , t� of the
field, as N is varied, has been performed according to Eq. �4�.
Four reconstructed fields are shown in Figs. 4–7. The field
I0�rn , t� reconstructed using only the first j=0 POD mode
gives us the spatiotemporal evolution of the average DHF
incidence. Further POD modes add stochasticity to the sys-
tem, the basic temporal periodicity being perturbed.

In order to investigate the spatial synchrony of the various
incidence functions, we analyze the cross correlation of re-
constructed DHF incidence at different truncation order N
and different lag times �,

FIG. 3. Cumulated energy of the first j�20 POD modes as a
function of the index j.

FIG. 4. Contours of the reconstruction of the incidence field by
using N=0 in the time-space plane. The reconstructions have been
made by using relation �4�.

FIG. 5. Contours of the reconstruction of the incidence field by
using N=4 in the time-space plane. The reconstructions have been
made by using relation �4�.

FIG. 6. Contours of the reconstruction of the incidence field by
using N=6 in the time-space plane. The reconstructions have been
made by using relation �4�.
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CN�rn,�� =
	FN�0,t�FN�rn,t + ��


�	FN�0,t�2
�	FN�rn,t + ��2

�5�

�the angular brackets mean time averages�. The cross corre-
lation performed using only the first POD mode
N=0,FN�rn , t�= I0�rn , t� �see Fig. 8 upper panel�, shows a
temporal periodicity of one year but does not show spatial
differences among the different provinces. This means that,
on average, almost periodic traveling pulses of epidemic are
felt at the same time across all provinces. This is the basic
POD mode. By averaging the cross correlation CN�rn ,�� over
all provinces rn we get the function CN��� reported in the

lower panel of Fig. 8. Even though the yearly periodicity is
well visible, the average cross correlation is greater than 0.6
for �=3 and 5 yr. This last result is perhaps very interesting
because it suggests looking for the presence of aperiodic
pulses with different energy content.

In order to get information about the presence of pulses
with different temporal and spatial properties, we use the
fluctuation POD modes FN�rn , t�= IN�rn , t�− I0�rn , t� for dif-
ferent truncation order. In Figs. 9–11 the cross-correlation
functions CN�rn ,�� for three different truncation orders N are
shown. For each N the function CN�rn ,�� presents a maxi-
mum for more than one time lag. This indicates the presence
of energetic fluctuations of the DHF epidemic that, starting
from Bangkok, invades the farther provinces �11�. The
N=4 truncation of fluctuation modes is different from the
other, because it shows two maxima for lag times of about
��3 and 5 yr; the basic yearly periodicity seems to be lost.
When the truncation order is increased and further POD
modes are included in the reconstruction �4�, equispaced
maxima for the cross correlation appear. The yearly period-
icity becames again the dominant trend.

FIG. 7. Contours of the reconstruction of the incidence field by
using N=24 in the time-space plane. The reconstructions have been
made by using relation �4�.

FIG. 8. �Color online� Contours of the cross-correlation coeffi-
cients C0, calculated using only the field I0�rn , t�, in the �rn ,�� plane
�see text� between Bangkok and the other provinces of Thailand
�upper panel�. Averaged cross correlation CN��� as a function of the
lag time � �lower panel�.

FIG. 9. �Color online� Contours of the cross-correlation coeffi-
cients C4�rn ,�� in the �rn ,�� plane �see text� between Bangkok and
the other provinces of Thailand. The coefficients have been calcu-
lated by using the fluctuating fields F4�rn , t�.

FIG. 10. �Color online� Contours of the cross-correlation coef-
ficients C6�rn ,�� in the �rn ,�� plane �see text� between Bangkok and
the other provinces of Thailand. The coefficients have been calcu-
lated by using the fluctuating fields F6�rn , t�.
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Looking at Figs. 9–11 we can realize that the spatial ex-
tension of the cross correlation of fluctuations depends on the
truncation order N. In particular, by comparing the N=4 and
6 truncations �Figs. 9 and 10, respectively�, one gets the
feeling that the spatial coherence of the pulses identified by
the N=4 truncation is greater than that identified by the N
=6 truncation. In other words the spatial extension from
Bangkok of aperiodic epidemic pulses looks to be greater
than the spatial extension of the periodic waves obtained
with truncation of higher-order N. To quantify the spatial
extension of traveling waves we define a spatial coherence
length RN as the average

D�rj� = 1

j
�
n=0

j � d� CN�rn,��� .

This function, when plotted against rj, has a parabolic shape.
The distance rj

�max�, corresponding to the maximum of the
curve D�rj�, measures the averaged spatial extension of the
cross correlation RN=rj

�max�. Thus the spatial coherence is

defined as the distance r of the province corresponding to the
maximum of the time averaged cross correlation. In Fig. 12
the spatial extention RN as a function of the number of fluc-
tuating modes used in the reconstruction is shown. For each
N both the two nearest provinces to the maximum define the
error bars 	rj

±, namely, both 	rj
+=rj+1−rj

�max� and 	rj
−

=rj
�max�−rj−1. The larger spatial extension of about 510 km,

corresponds to the fluctuation field reconstructed by using
N=4 modes. Reconstruction involving N
4 fluctuation
modes shows a lower spatial extension of about 420 km.
Then aperiodic pulses, characterized by a stronger degree of
infection, start from Bangkok at some time and move away
coherently for a large distance.

To measure the characteristic times corresponding to the
DHF occurrences, we define a kind of temporal coherence TN
built up by averaging the cross correlation in space up to RN,
namely,

TN��� = �
rn�RN

CN�rn,�� .

In Fig. 13 we report the temporal coherence calculated for
N=4, 6, and 24, the error bars being defined by summing up
to RN±	rj

±, respectively. For N=4 two peaks corresponding
to about 3 and 5 yr dominate the other. On the contrary, when
N=6 or 24, the one-year periodicity becames the dominant
feature.

FIG. 11. �Color online� Contours of the cross-correlation coef-
ficients C24�rn ,�� in the �rn ,�� plane �see text� between Bangkok
and the other provinces of Thailand. The coefficients have been
calculated by using the fluctuating fields F24�rn , t�.

FIG. 12. Spatial coherence as a function of the number of fluc-
tuating modes used in the reconstruction of the fluctuation field. The
error bars correspond to the nearest provinces from the maximum
�see text�.

FIG. 13. Time coherence for different approximated fields,
namely, N=4 �top panel�, 6 �middle panel�, and 24 �bottom panel�.
The error bars are calculated as in Fig. 12 �see text�.
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V. CONCLUSIONS

In conclusion we applied POD analysis within a biomedi-
cal context to spatiotemporal data of DHF occurrence in
Thailand. We showed that, at variance with the Fourier
analysis, POD is able to capture the main energetic and spa-
tial features of the spatiotemporal evolution of the epidemic
field. A reconstruction of the stochastic part of the epidemic
field is obtained by varying the number of POD modes, and
spatiotemporal information about the propagation of epi-
demic pulses from Bangkok toward the farther provinces has
been extracted from the data set. Apart from the basic yearly
periodicity, we found that a reconstruction using N=4 POD
modes mainly describes aperiodic pulses, peaked at 3 and 5
yr, of DHF occurrence propagating away from Bangkok to

the outer provinces. These pulses, which are superimposed
on the basic yearly cycle, remains coherent up to 510 km
from Bangkok. When the number of POD modes used in the
reconstruction is increased, the level of fluctuation increases
as well and the yearly periodicity, probably related to season-
ality �e.g., the monsoon�, became the dominant feature of the
epidemic. In this case the spatial extension is about 420 km.
While the periodic occurrence of the epidemic is well known
and in some sense expected, large and unpredictable epidem-
ics of DHF �24� must be considered as a purely occasional
increase of DHF. However, POD analysis shows that these
episodic pulses have a coherence of 3 or 5 yr. Up to now the
data set is too poor to firmly establish a recurrence for high-
energetic pulses, or to establish their stochastic nature.
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